

Passagierdrohnen Erfolgsfaktoren für die Mobilitäts – revolution des 21. Jahrhunderts

Vortrag – Alexander Dyskin



BERGISCHE UNIVERSITÄT WUPPERTAL



Wuppertal, January 30, 2020



### Here for you today



### Alexander Dyskin

Principal, Office Düsseldorf Alexander.Dyskin@rolandberger.com +49 160 7442981



#### Kim Kohmann

Senior Consultant, Office Munich Kim.Kohmann@rolandberger.com +49 160 7448213



# Roland Berger is the only global tier 1 management consulting firm with European roots

**Roland Berger offices** 

Founded in Germany in **1967**, we have a strong **international footprint** and **52 offices** in **35 countries**. We have around **2,400 employees** 

| Headquarters in Munich       | Budapest<br>Casablanca | Kyiv<br>Kuala Lumpur | Rome<br>São Paulo |
|------------------------------|------------------------|----------------------|-------------------|
| Spielfeld/Digital Hub Berlin | Chennai                | Lisbon               | Seoul             |
|                              | Chicago                | London               | Shanghai          |
|                              | Detroit                | Madrid               | Singapore         |
| Amsterdam                    | Doha                   | Manama               | Stockholm         |
| Bangkok                      | Dubai                  | Milan                | Stuttgart         |
| Barcelona                    | Dusseldorf             | Montreal             | Taipei            |
| Beijing                      | Frankfurt              | Moscow               | Tokyo             |
| Beirut                       | Gothenburg             | Mumbai               | Vienna            |
| Berlin                       | Guangzhou              | New Delhi            | Warsaw            |
| Boston                       | Hamburg                | Paris                | Yangon            |
| Brussels                     | Hong Kong              | Pune                 | Zagreb            |
| Bucharest                    | Jakarta                | Riyadh               | Zurich            |



# Roland Berger combines a unique set of profound expertise and experience with smart mobility solutions

### Our mobility value proposition

## Extensive experience with piloting innovative mobility solutions

- > We are globally recognized as leading advisor on mobility services among OEMs, suppliers, service providers and governments
- > We developed the cutting-edge integrated mobility platform in Dubai: from concept definition till successful implementation



- > We are an interdisciplinary team with in-depth expertise in transportation, automotive and infrastructure
- > We distinguish ourselves through an entrepreneurial spirit and apply a business-focused approach while being technologically top-notch

## 4 Entrepreneurial spirit with a business-focused approach –

## Long track record of defining operation models for disruptive services

- > We defined the operation and business models for several mobility providers worldwide
- > We regularly support established players and start-ups to translate disruptive ideas into successful and sustainable business operations



- We profit from a broad network of future mobility pioneers and regularly publish on smart cities and disruptive technologies
- > We work closely with the scientific community to test and assess the impact of innovations and apply scientific tools where they are useful

## Strong presence in global hotspots and access to inspiring mobility pioneers $\ 3$

Source: Roland Berger

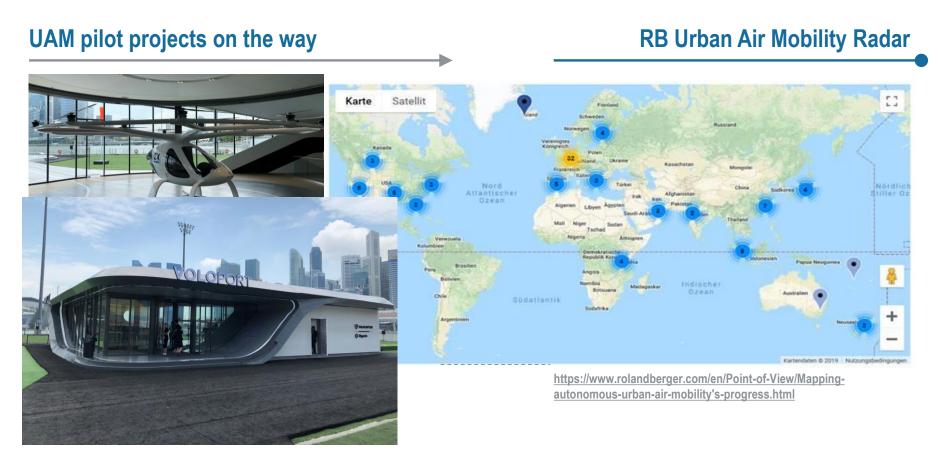
### We work closely with the scientific community to assess the impact of innovations and apply scientific tools where they are useful

Our additional cooperations with the scientific community

#### RWITHAACHEN Studienstiftung des deutschen Volkes Think:Act HUB os Alamos NATIONAL LABORATORY EST 1943 SANTA FE INSTITUTE "Bringing Science Zürich to Business" Westfälische Wilhelms-Universität NIVERSITY OF AMBRIDGE TECHNISCHE FRIEDRICH-ALEXANDER UNIVERSITÄT UNIVERSITÄT DARMSTADT

#### Scientific topics – Selection

- > Global AI footprint
- > Predictive maintenance
- > Network business models
- > Smart organizations ("Simple Smarts")
- > Commercial analytics
- > Network organizations
- > AI and blockchain in travel
- > Future-proof mobility
- > ML for Financial Services

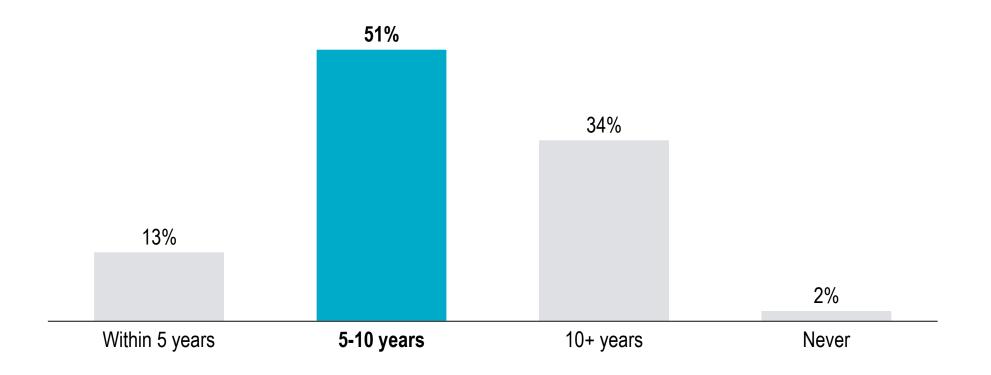

Scientific network – Selection





# Many UAM projects are announced worldwide – Roland Berger has launched an Urban Air Mobility Radar to track progress worldwide

Progress monitoring




Impressions of Volocopter Skyports prototype showcase in Singapore (Oct 2019)



## Increasing number of top executives in aerospace expect success of Urban Air Mobility in 5-10 years from now on

Urban Air Mobility to become revenue-earning [% of answers]





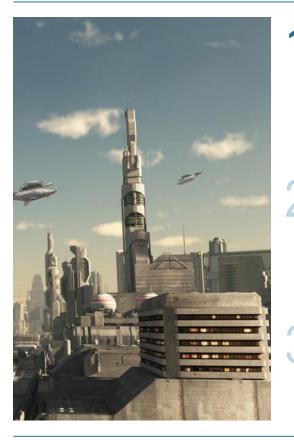
### Three key topics to make UAM successful in the near future



### Adopt technology to market needs

UAM business models are ready to take off and disrupt mobility markets and public transportation

#### **Focus on winning over the public**


Public acceptance remains the key challenge for UAM to succeed

#### Master multidisciplinary challenge

Setting up UAM operations requires technology and infrastructure development



### Three key topics to make UAM successful in the near future



### Adopt technology to market needs

UAM business models are ready to take off and disrupt mobility markets and public transportation

#### **Focus on winning over the public**

Public acceptance remains the key challenge for UAM to succeed

#### Master multidisciplinary challenge

Setting up UAM operations requires technology and infrastructure development



# The application opportunities for UAM are broad – Today we would like to discuss drones as part of public transport in more depth

### UAM use cases

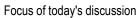


 Variety of public transport applications, e.g. air taxi, commute to airport and medium to long intercity flights



- > Air ambulance and rescue support
- > Delivery of medication/supply
- > Transport of organs




 Inspection and maintenance of large infrastructure facilities such as port bridges, wind turbines and train tracks



- > Rapid delivery of packages
- > Unscheduled deliveries that are routed as order is placed



> Delivery of heavier cargo on a regular basis



Source: Roland Berger



## Increasing urbanization brings traditional transportation networks to their limits – UAM adds a new dimension



By 2050, 67% of the world's population will reside in urban areas, up from 54% as of today



Population growth in urban areas outpaces up to 3-fold the capacity growth of public transport networks and infrastructure



Global transport infrastructure investment would need to increase by ~10 trillion USD to meet infrastructure needs in 2040



Heavy congestion increases traffic fatalities and long commute times decrease job productivity by up to 10%



Empty airspace over larger urban areas remain unoccupied as it is not used yet

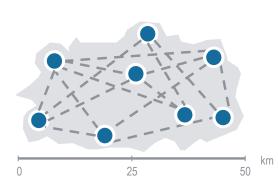
Increasing urbanization demands transport networks to increase their efficiency, affordability and safety



Urban Air Mobility adds a new mobility dimension and complements existing systems





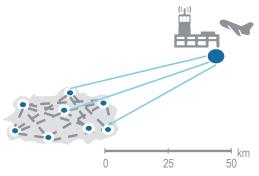

# Three main use cases will emerge for passenger drone services – Each with its own technological and operational requirements

### Passenger UAM use cases

#### Air taxis

### On-demand point-to-point operations

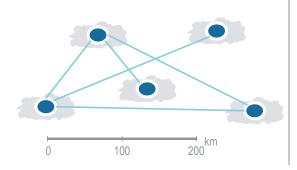
- > Non-stop service from any available landing pads within a defined area
- For one or two passengers and their light hand luggage (up to 20 kg) over distances of between 15 and 50 kilometers




Scheduled service

#### Airport shuttles

### Scheduled short-range operations


- > Fixed flight operations between various landing pads and the airport
- > For up to four passengers and between 50 and 80 kg of luggage on defined routes and timings
- > Over distances of between 15 and 50 kilometres



### III Intercity flights

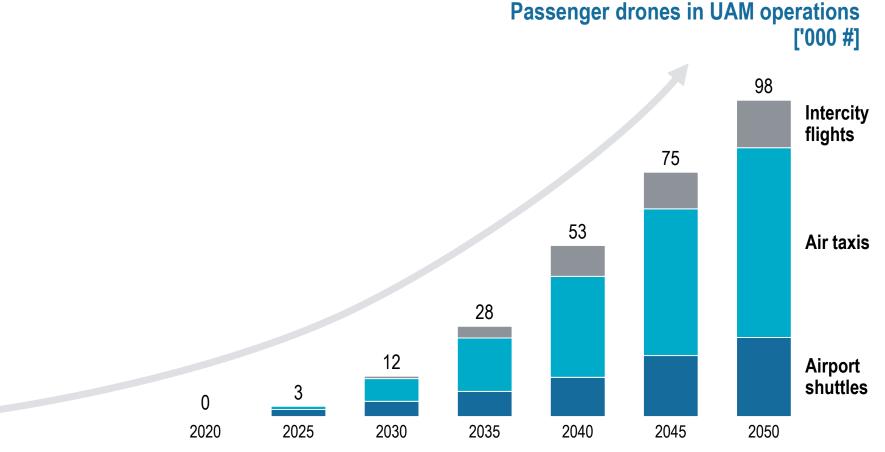
### Scheduled medium- to long-range operations

- > Fixed flight operations between cities that are too close to be viable for regular aviation links
- For up to four passengers over distances of between 50 and 250 kilometers



Source: Roland Berger

UAM landing site


On demand service

Metropolitan area



# Numbers of passenger drones in UAM operations is forecasted to grow rapidly – Almost 100,000 Passenger drones to fly by 2050

Forecast by passenger use cases



Note: Estimated that ~100 cities will have UAM operation in 2050

Source: Roland Berger

## Berger

Five basic electric aircraft architectures are on the rise with varying strengths making them better suited to different use cases

| Aircraft<br>architecture             |                                                            |                                |                 |                                           |                                       |
|--------------------------------------|------------------------------------------------------------|--------------------------------|-----------------|-------------------------------------------|---------------------------------------|
|                                      | Highly distributed<br>propulsion concepts<br>(multicopter) | Quadrocopters                  | Hybrid concepts | Tilt-ing/convertible<br>aircraft concepts | Fix-winged vectored<br>trust concepts |
| Disc<br>loading                      |                                                            |                                |                 |                                           |                                       |
| Hoovering<br>efficiency              |                                                            |                                |                 |                                           |                                       |
| Downwash speed<br>& noise            |                                                            |                                |                 |                                           |                                       |
| Forward flight speed<br>& efficiency |                                                            |                                |                 |                                           |                                       |
| Gust resistance<br>and stability     |                                                            |                                |                 |                                           |                                       |
| Preferred use case                   | Air taxis (inner-city<br>point-to-point<br>services)       | Air taxis and airport shuttles | All             | All                                       | Airport shuttles<br>and intercity     |



# Aerospace companies and startups alike have joined the race to translate the vision of flying taxis from science fiction into reality

Impressions of eVTOL architectures being researched





### Three key topics to make UAM successful in the near future

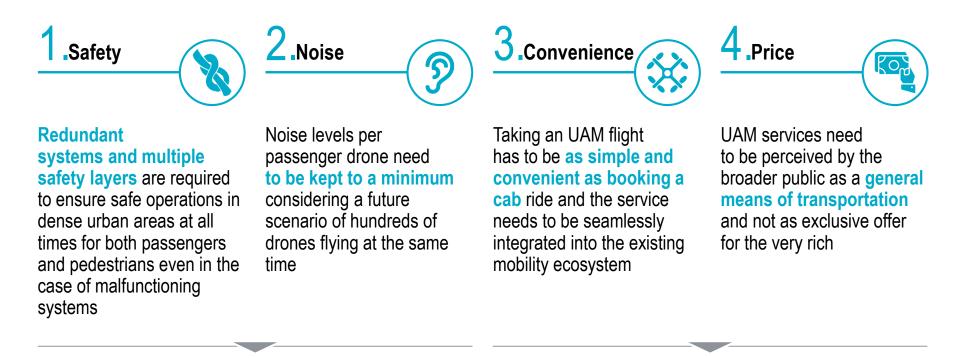


#### Adopt technology to market needs

UAM business models are ready to take off and disrupt mobility markets and public transportation

#### **Focus on winning over the public**

Public acceptance remains the key challenge for UAM to succeed


#### Master multidisciplinary challenge

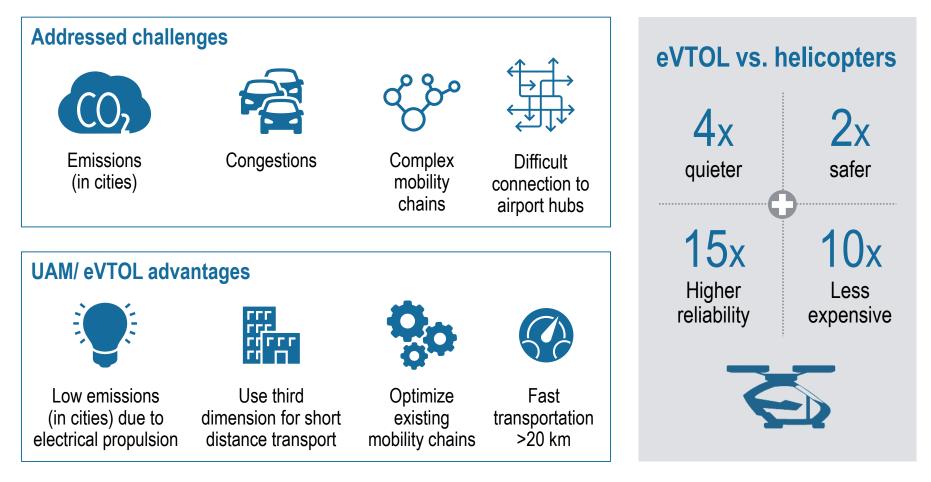
Setting up UAM operations requires technology and infrastructure development



# Public acceptance is based on four major pillars: Safety, noise as well as convenience of the services offered at affordable prices

#### Public acceptance

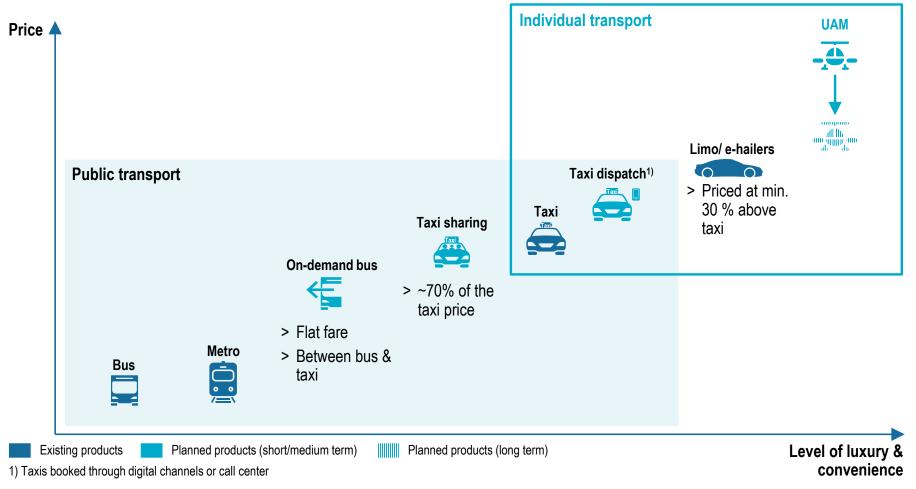



#### **Regulatory challenge**

**Commercial challenge** 

## Berger

# UAM offers a number of solutions to today's traffic problems which may foster acceptance rates among customers and authorities

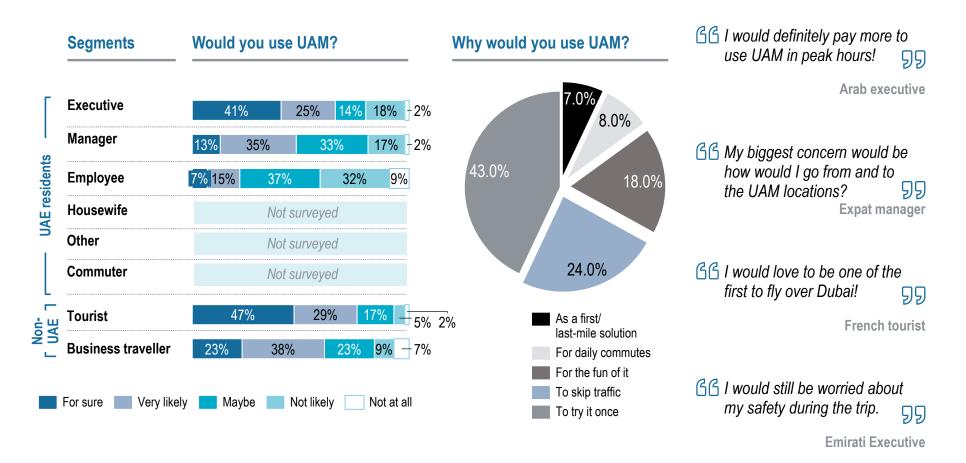

Benefits of Urban Air Mobility – Selected examples





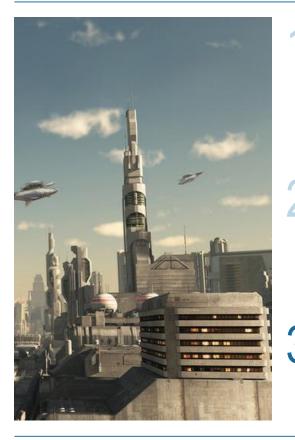
### Initially, UAM services will be positioned as high-end products transforming into an integrated public transportation offering over time

Urban transportation landscape




Source: Roland Berger




# UAM is considered as a premium mode of transport – Yet our survey unveiled clear demand among relevant customer segments

Passenger acceptance: Example based our survey in Dubai





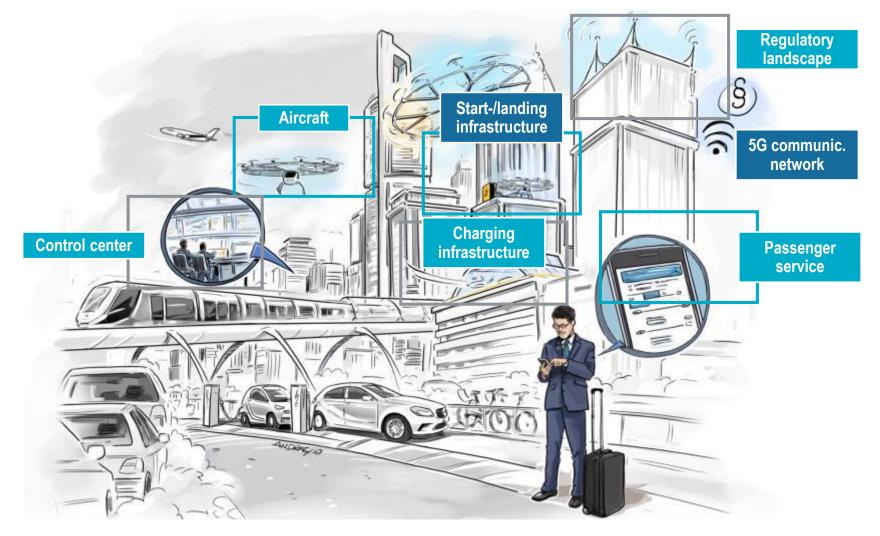
### Three key topics to make UAM successful in the near future



#### Adopt technology to market needs

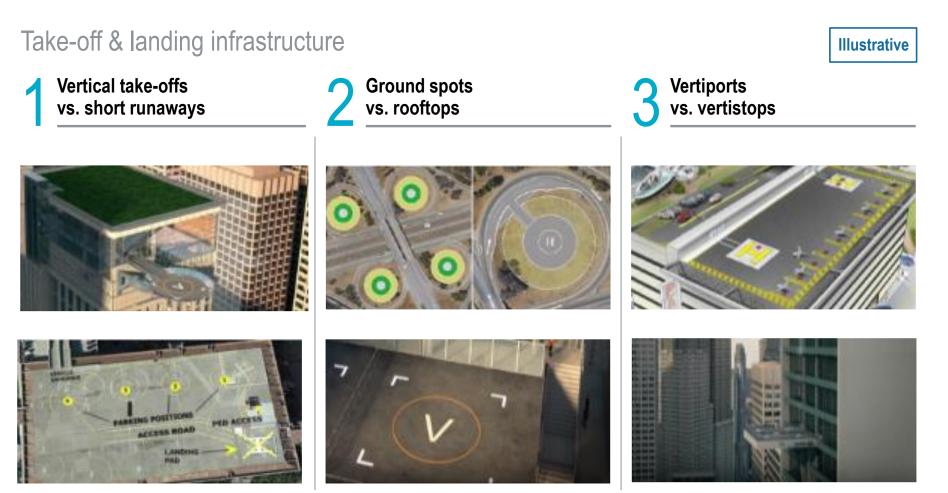
UAM business models are ready to take off and disrupt mobility markets and public transportation

#### Focus on winning over the public


Public acceptance remains the key challenge for UAM to succeed

#### Master multidisciplinary challenge

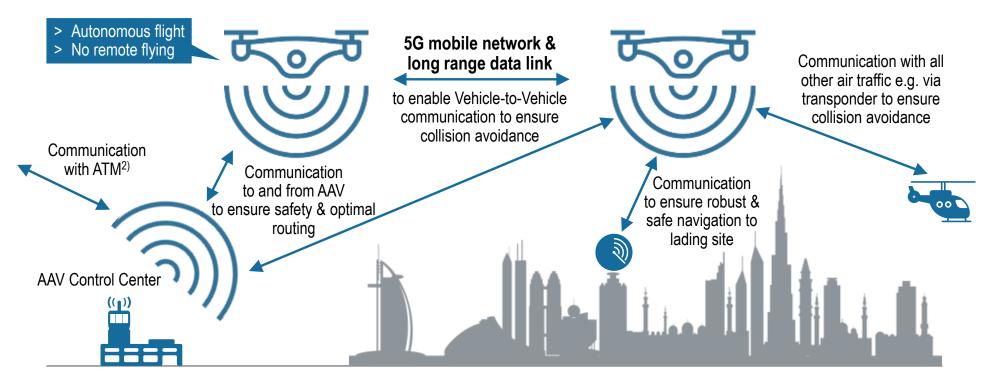
Setting up UAM operations requires technology and infrastructure development




It's not just about drones - Urban eVTOL operations are a system of systems that needs to be put in place greenfield






# The available take-off & landing infrastructure of a city has to be investigated in-depth in order to enable suitable eVTOL services





## The communication network shall provide redundancies and can be based on existing or newly created networks

Communication network based on 5G mobile network & dedicated AAV<sup>1)</sup> data link



#### **Central AATS Control Center**

Autonomous aerial vehicle
Air traffic management

Source: Roland Berger

#### Local navigation system



0

# In addition to infrastructure and communication, several further key aspects have to be addressed to realize the vision of UAM

Success factors of Urban Air Mobility operations

#### Commercialization **(**

- > Time-saving, upper-priced, yet still affordable alternative to road taxis
- > VTOL operations with helicopters first and eventual transition to drones

#### Compliance with Transport § & Air Traffic Regulations

- > Early involvement of transport authorities for air taxi approvals
- > Automated interaction with air traffic control

#### Predictive IT-Backend

- > Smart VTOL routing and dispatching
- Predictive reservation of landing areas and charging times

#### Flight Experience

- > Jaw-dropping but always safe flight experience
- > Intuitive side functions such as booking and billing



#### Integrated Mobility Service

- > Collaboration with airports, public transport and other private mobility services
- If available, integration in automotive joint mobility offerings

#### Customer Service

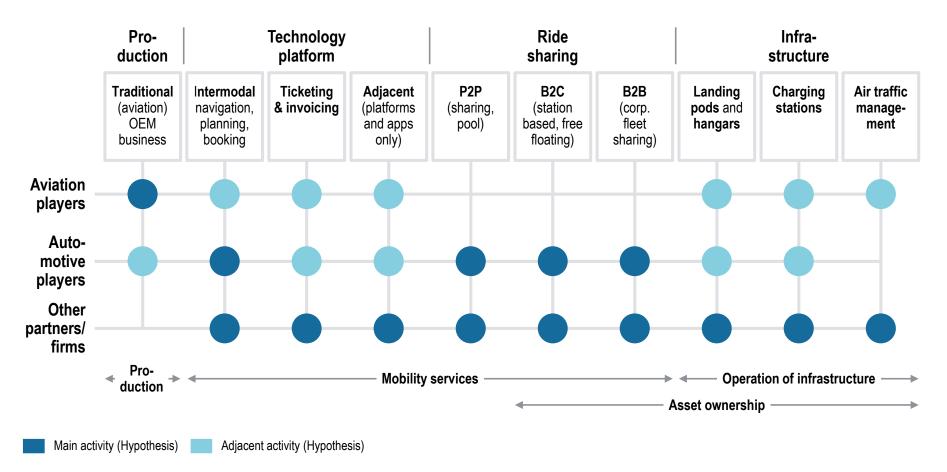
> Appreciated customer services for both private users and B2B clients

#### VTOL & Charging Infrastructure

- Identification and licensing of suitable landing areas on roofs and open spaces
- > Installation of charging hubs

#### Maintenance X

- > Off-site hangars for cleaning and repair services
- > Allocation of downtime periods during times of low air taxi demand


Stand-alone ownership possible

Alignments / partnerships required



# Players from various industries need to define where they would like to position themselves within the overall UAM/ eVTOL ecosystem

UAM ecosystem and potential positioning of aviation and automotive players





# The vision of UAM can only be realized in close collaboration between manufacturers, operators, infrastructure, cities and authorities

### Key stakeholders

#### **Authorities**

A comprehensive regulatory framework will be essential to guarantee the safety of people, facilities and third-party property

#### Infrastructure providers

Landing sites, charging stations and maintenance facilities must be **strategically located** and operated at **high utilization rate** 



#### Manufacturers

Will have to design and develop reliable eVTOL aircraft suitable for defined urban use cases at reasonable costs

#### **Operators**

Will act as the link between all stakeholders and will be responsible for safe, efficient and profitable UAM operations



# Established and new players are racing to pave the way for Urban Air Mobility

Summary

- Translating UAM into reality requires high investments while market development is still unclear only some projects will survive and lead the way for UAM
- 2 The most promising companies have a clear view of their targeted use case and develop a perfectly suited concept, which might quickly become a dominant design
- 3 Winning over the public is crucial and will be achieved by offering a premium yet affordable service seamlessly integrated into a city's existing mobility ecosystem
- **4** ..... The earlier manufacturers, service and infrastructure providers join forces and offer holistic solutions to cities, the higher their chances to become the defining players

## Time for your questions





Alexander Dyskin Transportation



**Kim Kohmann** Transportation

